Title
Author
DOI
Article Type
Special Issue
Volume
Issue
Density and diameter of dentinal tubules of first and second primary human molars - comparative scanning electron microscopy study
1Departments of Oral Histology and Pediatric Dentistry, School of Dentistry, Lutheran University of Brazil, ULBRA, Canoas, RS, Brazil
2Emeritus of Dentistry, School of Dentistry, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil, Phone: (021) 571-3300
DOI: 10.17796/jcpd.26.3.t5344598326r5687 Vol.26,Issue 3,July 2002 pp.297-304
Published: 01 July 2002
*Corresponding Author(s): Henrique Castillhos Ruschel E-mail: henrirus@zaz.com.br
The aim of the present survey was to evaluate tubule density and diameter of dentin of first and sec-ond primary human molars and compare the two dental categories. These evaluations were done solely at the middle third of the crowns of twenty extracted noncarious teeth separated in two groups (first molars and second molars). The tubule diameters observed were 0.794µm and 1.0µm for first and second molars, respectively (measurements done at 35-65% from the pulp-chamber walls). Regarding tubular density, the measurements indicated 17,997.594 tubules/mm2 and 25,211.317 tubules/mm2 for first and second molars, respectively. Comparisons between-groups indicated that tubule diameter and density of dentin were higher in second molars, being the difference highly significant (P<0.01).
Henrique Castillhos Ruschel,Orlando Chevitarese. Density and diameter of dentinal tubules of first and second primary human molars - comparative scanning electron microscopy study. Journal of Clinical Pediatric Dentistry. 2002. 26(3);297-304.
1. Agematsu H, Sawada T, Watanabe H, Yanagisawa T, Ide Y. Immuno-scanning electron microscope characterization of large tubules in human primary dentin. Anat Rec 248: 339-345, 1997.
2. Agematsu H, Watanabe H, Yamamoto H, Fukayama M, Kanazawa T, Miake K. Scanning electron microscopic observa-tions of microcanals and continuous zones of interglobular dentin in human primary incisal dentin. Bull Tokyo Dent Coll 31: 163- 173, 1990.
3. Araújo FB, Garcia-Godoy F. A comparison of three resin bonding agents to primary tooth dentin. Pediatr Dent 19: 253-257, 1997.
4. Arends J, Stokroos I, Jongebloed WG, Rubens J. The diameter of the dentinal tubules in human coronal dentine after demineral-ization and air drying – A combined light microscopy and SEM study. Caries Res 29: 118-121, 1995.
5. Bevelander G, Benzer S. Morphology and incidence of secondary dentin in human teeth. J Am Dent Assoc 30: 1075-1082, 1943.
6. Blake GC. The peritubular translucent zones in human dentine. Br Dent J 104: 57-64, 1958.
7. Bordin-Aykroyd S, Sefton J, Davies EH. In vitro bond strengths of three current dentin adhesives to primary and permanent teeth. Dent Mater 8: 74-78, 1992.
8. Brännström M, Lindén LA,Aström A.The hydrodynamics of the dental tubule and pulp fluid - A discussion of its significance in relation to dentinal sensitivity. Caries Res 1: 310-317, 1967.
9. Carrigan PJ, Morse DR, Furst ML, Sinai IH. A scanning electron microscopic evaluation of human dentinal tubules according to age and location. J Endod 10: 359-363, 1984.
10. Causton BE. Improved bonding of composite restorative to den-tine. Br dent J 156: 93-95, 1984.
11. Costa LRRS, Watanabe I. Structure of normal and conditioned dentin in non-erupted primary teeth. J Dent Res 77: 1192, abstr. H- 3, 1998.
12. Dourda AO, Moule AJ, Young WG. A morphometric analysis of the cross-sectional area of dentine occupied by dentinal tubules in human third molar teeth. Int Endod J 27: 184-189, 1994.
13. El Kalla IH, Garcia-Godoy F. Bond strength and interfacial micromorphology of four adhesive systems in primary and per-manent molars. J Dent Child 65: 169-176, 1998.
14. Elkins CJ, Mc Court JW. Bond strength of dentinal adhesives in primary teeth. Quintessence Int 24: 271-273, 1993.
15. Fagan TR, Crall JJ, Jensen ME, Chalkley Y, Clarkson B. A com-parison of two dentin bonding agents in primary and permanent teeth. Pediatr Dent 8: 144-146, 1986.
16. Forssell-Ahlberg K, Brännström M, Edwall L. The diameter and number of dentinal tubules in rat, cat, dog and monkey. Acta Odontol Scand 33: 243-250, 1975.
17. Fosse G, Saele PK, Eide R. Numerical density and distributional pattern of dentin tubules. Acta Odontol Scand 50: 201-210, 1992.
18. Frank RM. Electron microscopy of undecalcified sections of human adult dentine. Arch Oral Biol 1: 29-33, 1959.
19. Fritz U, Garcia-Godoy F, Finger WJ. Enamel and dentin bond strength and bonding mechanism to dentin of gluma CPS to pri-mary teeth. J Dent Child 64: 32-37, 1997.
20. Fromme HG, Riedel H. Messungen über die weite der dentinkanälchen na nichtenmineralisierten bleibenden zähnen und milchzähnen. Dt Zahnärztl Z 25: 401-405, 1970.
21. Garberoglio P. The ratio of the densities of dentinal tubules on the cervical and axial walls in cavities. Quintessence Int 25:49-52, 1994.
22. Garberoglio R, Brännström M. Scanning electron microscopic investigation of human dentinal tubules. Arch Oral Biol 21: 355-362, 1976.
23. Hals E. Observations on giant tubules in human coronal dentin by light microscopy and microradiography. Scand J Dent Res 91: 1- 7, 1983.
24. Hirayama A. Experimental analytical electron microscopic stud-ies on the quantitative analysis of elemental concentrations in biological thin specimens and its application to dental science. J Tokyo Dent Coll Soc 90: 1019-1036, 1990.
25. Hirayama A, Yamada M, Miake K. Analytical electron micro-scopic studies on the dentinal tubules of human primary teeth. J Dent Res 64: 743, abstr. 65, 1985.
26. Hirayama A, Yamada M, Miake K. An electron microscopic study on dentinal tubules of human primary teeth. J Tokyo Dent Coll Soc 86: 1021-1031, 1986.
27. Holland GR. Morphological features of dentine and pulp related to dentine sensitivity. Arch Oral Biol 39: 35-115, 1994.
28. Hoppe WF, Stuben J. Über die messungdes volmens der dentinkanälchen und über das verhaltnis des kanälvolumens zum gesamtdentinvolumen. Stoma 18: 38-45, 1965.
29. Hosoya Y. Effect of acid etching on normal and carious primary dentin: scanning electron microscopic observations. J Pedodont 12: 362-369, 1988.
30. Johnsen DC. Comparison of primary and permanent teeth. In: Avery, J. A. Oral development and histology. 2.ed., New York: Thieme Medical, pp 282-296, 1994.
31. Jumlongras D, White GE. Bond strengths of composite resin and compomers in primary and permanent teeth. J Clin Pediatr Dent 21: 223-229, 1997.
32. Kaga M, Hashimoto M, Oguchi H. Bond strength of dentinal adhesives in primary molars and premolars. J Dent Res 76: 188, abstr. 1393, 1997.
33. Ketterl W. Studie uber das dentin der permanenten zahne des menschen. Stoma 14: 79-112, 1961.
34. Konishi N,Watanabe LG, Staninec M, Marshall GW, Marshall SJ. Dentin shear bond strength: effect of distance from pulp. J Dent Res 76: 188, abstr. 1400, 1997.
35. Koutsi V, Noomam RG, Horner JA, Simpson MD, Matthews WG, Pashley DH. The effect of dentin depth on the permeability and ultrastructure of primary molars. Pediatr Dent 16: 29-35, 1994.
36. Lakomaa E, Rytömaa I. Mineral composition of enamel and dentin of primary and permanent teeth in Finland. Scand J Dent Res 85: 89-95, 1977.
37. Malferrari S, Finger WJ, Garcia-Godoy F. Resin bonding efficacy of Gluma 2000 to dentine of primary teeth: an in vivo study. Int J Paediatr Dent 5: 73-79, 1995.
38. Maroli S, Khera SC, Krell KV. Regional variation in permeabil-ity of young dentin. Oper Dent 17: 93-100, 1992.
39. Mazzeo N, Ott NW, Hondrum SO. Resin bonding to primary teeth using three adhesive systems. Pediatr Dent 17: 112-115, 1995.
40. Mjör IA, Nordahl I. The density and branching of dentinal tubules in human teeth. Arch Oral Biol 41: 401-412, 1996.
41. Nör JE, Feigal RJ, Dennison JB, Edwards CA. Dentin bonding: SEM comparison of the resin-dentin interface in primary and permanent teeth. J Dent Res 75: 1396-1403, 1996.
42. Nör JE, Feigal RJ, Dennison JB, Edwards CA. Dentin bonding: SEM comparison of the dentin surface in primary and perma-nent teeth. Pediatr Dent 19: 246-252, 1997.
43. Noyes FB. The dentin, in: Dental histology and embryology. 1st ed. Philadelphia, Lea and Febiger, pp 167-187, 1912.
44. Olmez A, Oztas N, Basak F, Erdal S. Comparison of the resin-dentin interface in primary and permanent teeth. J Clin Pediatr Dent 22: 293-298, 1998.
45. Olsson S, Öilo G, Adamczak E. The structure of dentin surfaces exposed for bond strength measurements. Scand J Dent Res 101: 180- 184, 1993.
46. Pashley EL, Tao L, Matthews WG, Pashley DH. Bond strengths to superficial, intermediate and deep dentin in vivo with four dentin bonding systems. Dent Mater 9: 19-22, 1993.
47. Piesco NP. Histology of dentin. In: Avery JA. Oral development and histology. 2ed., New York, Thieme Medical, pp 242-260, 1994.
48. Ruschel HC, Souza Jr MA, Chevitarese O, Lopes MFS. Compar-ative study about different methods for smear layer removal. J Dent Res 76: 973, abstr. 130, 1997.
49. Salama FS. Gluma bond strength to dentin of primary molars. J Clin Pediatr Dent 19: 35-40, 1994.
50. Salama FS, Tao L. Comparison of Gluma bond strength to pri-mary vs. permanent teeth. Pediatr Dent 13: 163-166, 1991.
51. Sumikawa DA, Strawn SE, Watanabe LG, Marshall GW, Mar-shall SJ. Microstructure of dentin in primary teeth. J Dent Res 75: 196, abstr. 1432, 1996.
52. Sumikawa DA, Marshall GW, Gee L, Marshall SJ. Microstructure of primary tooth dentin. Pediatr Dent 21: 439-444, 1999.
53. Suzuki T, Finger WJ. Dentin adhesives: site of dentin vs. bonding of composite resins. Dent Mater 4: 379-383, 1988.
54. Tagami J, Tao L, Pashley DH. Correlation among dentin depth, permeability and bond strength of adhesive resins. Dent Mater 6:
45- 50, 1990.
55. Takuma S. Electron microscopy of the structure around the dentinal tubule. J Dent Res 39: 973-981, 1960.
56. Takuma S. Peritubular matrix in dentin. J Dent Res 37: 7, abstr. 10,1958.
57. Tao L, Pashley DH, Mc Guckin RS. In vivo bond strength: effects of depth and tooth type. J Dent Res 69: 285, abstr. 1411, 1990.
58. Ten Cate AR. Dentinogenesis. In: Oral histology: development, strucuture and function. 5ed. St. Louis, Mosby, pp 128-149, 1998.
59. Thomas HF, Carella P. Scanning electron microscope study of dentinal tubules from un-erupted human teeth. Arch Oral Biol 28: 1125-1130, 1983.
60. Torneck CD. Dentin-pulp complex. In: Oral histology: develop-ment, strucuture and function. 5ed. St. Louis, Mosby, pp 150-196, 1998.
61. Whittaker DK, Kneable MJ. The dentine-predentine interface in human teeth: a scanning electron microscope study. Brit Dent J 146: 43-46, 1979.
Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.
Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.
Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.
JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.
Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.
BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.
Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.
Scopus: CiteScore 1.8 (2023) Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles (22,794 active titles and 13,583 Inactive titles) from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject fields: life sciences, social sciences, physical sciences and health sciences.
Top