Title
Author
DOI
Article Type
Special Issue
Volume
Issue
Preliminary Study Evaluating the Accuracy of MRI Images on CBCT Images in the Field of Orthodontics
1Postgraduate Orthodontic Program, Arizona School of Dentistry & Oral Health, A.T. Still University, Mesa, AZ, and PhD Program, Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, and Private Practice of Orthodontics, Okayama, Japan
2Postgraduate Orthodontic Program, Arizona School of Dentistry & Oral Health, A.T. Still University, Mesa, AZ and International Scholar, the Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
3Central division of radiology Okayama University hospital, Okayama, Japan
4Department of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital, Okayama, Japan
5Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
6Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
7Oral Biology, the Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
DOI: 10.17796/jcpd.36.2.r7853hp574045414 Vol.36,Issue 2,March 2012 pp.211-218
Published: 01 March 2012
*Corresponding Author(s): Park JH E-mail: JPark@atsu.edu
Objective: The purpose of this study was to explore the 3-dimensional (3D) accuracy of magnetic resonance imaging (MRI) on cone-beam computed tomography (CBCT) images after the registration of MRI images on CBCT images. Materials and Methods: Three Japanese adult females volunteered for this study. To transform digital imaging and communication in medicine (DICOM) data derived from MRI and CBCT images into polygon data, five software programs were used. CBCT and MRI images were obtained within one week, and both were registered by the iterative closest point (ICP) method. To assess the accuracy of the composite MRI-CBCT, the measurement errors of the MRI-CBCT were verified. Measurement values were compared using frontal and cephalometric soft-tissue landmarks. Differences were analyzed using the non-parametric Mann-Whitney U test. Results: There were no significant linear measurement errors (P ≯ 0.05) when the images were measured from the superimposed MRI-CBCT images. Conclusion: The MRI images attained from MRI - CBCT registration showed accurate 3D linear measurements
Magnetic resonance imaging (MRI), cone-beam computed tomography (CBCT), MRI-CBCT registration, 3D accuracy
Tai K,Park JH,Hayashi K,Yanagi Y,Asaumi JI,Iida S,Shin JW. Preliminary Study Evaluating the Accuracy of MRI Images on CBCT Images in the Field of Orthodontics. Journal of Clinical Pediatric Dentistry. 2012. 36(2);211-218.
1. Terajima M, Nakasima A, Aoki Y, Goto TK, Tokumori K, Mori N, Hoshinod Y. A 3-dimensional method for analyzing the morphology of patients with maxillofacial deformities. Am J Orthod Dentofacial Orthop, 136: 857–867, 2009.
2. Oberoi S, Chigurupati R, Gill P, Hoffman WY, Vargervik K. Volumet-ric assessment of secondary alveolar bone grafting using cone beam computed tomography. Cleft Palate Craniofac J, 46: 503–511, 2009.
3. Carvalho FDAR, Cevidanes LHS, da Motta ATS, Almeida MADO, Phillips C. Three-dimensional assessment of mandibular advancement 1 year after surgery. Am J Orthod Dentofacial Orthop, 137: S53.e1–e12, 2010.
4. Haney E, Gansky SA, Lee JS, Johnson E, Maki K, Miller AJ, Huang JC. Comparative analysis of traditional radiographs and cone-beam computed tomography volumetric images in the diagnosis and treat-ment planning of maxillary impacted canines. Am J Orthod Dentofacial Orthop, 137: 590–597, 2010.
5. Honey OB, Scarfe WC, Hilgers MJ, Klueber K, Silveira AM, Haskell BS, Farman AG. Accuracy of cone-beam computed tomography imag-ing of the temporomandibular joint: comparisons with panoramic radi-ology and linear tomography. Am J Orthod Dentofacial Orthop, 132: 429–438, 2007.
6. Hilgers ML, Scarfe WC, Scheetz JP, Farman AG. Accuracy of linear temporomandibular joint measurements with cone beam computed tomography and digital cephalometric radiography. Am J Orthod Dentofacial Orthop, 128: 803–811, 2005.
7. Kim Y, Hong J, Hwang Y, Park Y. Three-dimensional analysis of pha-ryngeal airway in preadolescent children with different anteroposterior skeletal patterns. Am J Orthod Dentofacial Orthop, 137: 306.e1–e11, 2010.
8. Liu D, Zhang W, Zhang Z, Wu Y, Ma X. Localization of impacted max-illary canines and observation of adjacent incisor resorption with cone-beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 105: 91–98, 2008.
9. Berco M, Rigali PH, Miner RM, DeLuca S, Anderson NK, Will LA. Accuracy and reliability of linear cephalometric measurements from cone-beam computed tomography scans of a dry human skull. Am J Orthod Dentofacial Orthop, 136: 17.e1–e9, 2009.
10. Moshiri M, Scarfe WC, Hilgers ML, Scheetz JP, Silveira AM, Farman AG. Accuracy of linear measurements from imaging plate and lateral cephalometric images derived from cone-beam computed tomography. Am J Orthod Dentofacial Orthop, 132: 550–560, 2007.
11. Oliveira AE, Cevidanes LH, Phillips C, Motta A, Burke B, Tyndall D. Observer reliability of three-dimensional cephalometric landmark identification on cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 107: 256–265, 2009.
12. van Vlijmen O, Bergé S, Swennen G, Bronkhorst EM, Katsaros C, Kui-jpers-Jagtman AM. Comparison of cephalometric radiographs obtained from cone-beam computed tomography scans and conventional radi-ographs. J Oral Maxillofac Surg, 67: 92–97, 2009.
13. Chien PC, Parks ET, Eraso F, Hartsfield JK, Roberts WE, Ofner S. Comparison of reliability in anatomical landmark identification using two-dimensional digital cephalometrics and three-dimensional cone beam computed tomography in vivo. Dentomaxillofac Radiol, 38: 262–273, 2009.
14. Lamichane M, Anderson NK, Rigali PH, Seldin EB, Will LA. Accuracy of reconstructed images from cone-beam computed tomography scans. Am J Orthod Dentofacial Orthop, 136: 156.e1–e6, 2009.
15. Tasaki MM, Westesson PL. Temporomandibular joint: diagnostic accu-racy with sagittal and coronal MR imaging. Radiology, 186: 723–729, 1993.
16. Tasaki MM, Westesson PL, Isberg AM, Ren YF, Tallents RH. Classifi-cation and prevalence of temporomandibular joint disk displacement in patients and symptom-free volunteers. Am J Orthod Dentofacial Orthop, 109: 249–262, 1996.
17. Goto TK, Nishida S, Nakamura Y, Tokumori K, Nakamura Y, Kobayashi K, Yoshida Y, Yoshiura K. The accuracy of 3-dimensional magnetic resonance 3D vibe images of the mandible: an in vitro comparison of magnetic resonance imaging and computed tomography. Oral Surg Oral Mad Oral Pathol Oral Radiol Endod, 103: 550–559, 2007.
18. Horn BKP. Closed-form solution of absolute orientation using unit quaternions. J Opt Soc of Am, 44: 629–642, 1987.
19. Arun KS, Huang TS, Blostein SD. Least-squares fitting of two 3-dimensional point sets. IEEE Trans Pattern Anal Mach Intell, 9: 698–700, 1987.
20. Declerck J, Feldmar J, Goris ML. Automatic registration and alignment on a template of cardiac stress and rest reoriented SPECT images. IEEE Trans Med Imaging, 16: 727–737, 1997.
21. Terajima M, Furuichi Y, Aoki Y, Goto TK, Tokumori K, Nakasima A. A 3-dimensional method for analyzing facial soft-tissue morphology of patients with jaw deformities. Am J Orthod Dentofacial Orthop, 135: 715–722, 2009.
22. Kataoka Y, Nakano H, Matsuda Y, Araki K, Okano T, Maki K. Three dimensional diagnostic imaging of the alveolar bone using dento-max-illofacial cone beam X-ray CT. Orthod Waves-Jpn Ed, 66: 81–91, 2007.
23. Moorrees CFA. Natural head position-a revival. Am J Orthod Dentofa-cial Orthop, 105: 512–513, 1994.
24. Tai K, Hotokezaka H, Park JH , Tai H, Miyajima K, Choi M, et al. Pre-liminary cone-beam computed tomography study evaluating dental and skeletal changes after treatment with a mandibular Schwarz appliance. Am J Orthod Dentofacial Orthop, 138: 262.e1–e11, 2010.
25. Tai K, Park JH, Mishima K, Hotokezaka H. Using superimposition of 3-dimensional cone-beam computed tomography images with surface-based registration in growing patients. J Clin Pediatr Dent, 34: 361–368, 2010.
26. Bravo G, Potvin L. Estimating the reliability of continuous measures with Cronbach’s alpha or the intraclass correlation coefficient: toward the integration of two traditions. J Clin Epidemiol, 44: 381–390, 1991.
27. White SC, Pharoah MJ. Oral radiology: principles and interpretation. 4th ed. Mosby, St Louis; 2000.
28. Wyper DJ, Turner JW, Patterson J, Condon BR, Grossart KW, Jenkins A, et al. Accuracy of stereotaxic localization using MRI and CT. J Neu-rol Neurosurg Psychiatry, 49: 1445–1448, 1986.
29. Buhl SK, Duun-Christensen AK, Kristensen BH, Behrens CF. Clinical evaluation of 3D/3D MRI-CBCT automatching on brain tumors for online patient setup verification – A step towards MRI-based treatment planning. Acta Oncologica, 49: 1085–1091, 2010.
30. Weltens C, Menten J, Feron M, Bellon E, Demaerel P, Maes F, et al. Interobserver variations in gross tumor volume delineation of brain tumors on computed tomography and impact of magnetic resonance imaging. Radiother Oncol, 60: 49–59, 2001.
31. Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV. Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys, 43: 57–66, 1999.
32. Khoo VS, Dearnaley DP, Finnigan DJ, Padhani A, Tanner SF, Leach MO. Magnetic resonance imaging (MRI): Considerations and applica-tions in radiotherapy treatment planning. Radiother Oncol, 42: 1–15, 1997.
33. Gosain AK, Amarante MTJ, Hyde JS, Yousif N. A dynamic analysis of changes in the nasolabial fold using magnetic resonance imaging: implications for facial rejuvenation and facial animation surgery. Plas-tic & Reconstructive Surgery, 98: 622–636, 1996.
34. Beuf O, Lissac M, Cremillieux Y, Briguet A. Correlation between mag-netic resonance imaging disturbances and the magnetic susceptibility of dental materials. Dent Mater, 10: 265–268, 1994.
35. Brown B, Swallow C, Eiseman A. MRI artifact masquerading as orbital disease. Int Ophthalmol, 24: 343–347, 2001.
36. Lissac M, Coudert JL, Briguet A, Amiel M. Disturbances caused by dental materials in magnetic resonance imaging. Int Dent J, 42: 229–233, 1992.
37. Heindel W, Friedman G, Bunke J, Thomas B, Firsching R, Ernestus RI. Artifacts in MR imaging after surgical intervention. J Comput Assist Tomogr, 10: 596–599, 1986.
38. Elison JM, Leggitt VL, Thomson M, Oyoyo U, Wycliffe ND. Influence of common orthodontic appliances on the diagnostic quality of cranial magnetic resonance images. Am J Orthod Dentofacial Orthop, 134: 563–572, 2008.
39. Khoo VS, Dearnaley DP, Finnigan DJ, Padhani A, Tanner SF, Leach MO. Magnetic resonance imaging (MRI): Considerations and applications in radiotherapy treatment planning. Radiother Oncol, 42: 1–15, 1997.
Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.
Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.
Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.
JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.
Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.
BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.
Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.
Scopus: CiteScore 1.8 (2023) Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles (22,794 active titles and 13,583 Inactive titles) from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject fields: life sciences, social sciences, physical sciences and health sciences.
Top