Article Data

  • Views 1079
  • Dowloads 156

Original Research

Open Access

Microhardness and Surface Roughness of Glass Ionomer Cements after APF and TiF4 Applications

  • Topaloglu-Ak A1,*,
  • Cogulu D1
  • Kocatas Ersin N1
  • Sen BH1

1Department of Pedodontics, Ege University, School of Dentistry, Bornova, Izmir, Turkey

DOI: 10.17796/jcpd.37.1.uu24059v066508g4 Vol.37,Issue 1,January 2013 pp.45-52

Published: 01 January 2013

*Corresponding Author(s): Topaloglu-Ak A E-mail: aslitopaloglu@yahoo.com

Abstract

Objective: To evaluate whether TiF4 solution and APF gel had any adverse effects on the surface morphology of newly developed glass ionomers. Study Design: Fifteen disc-shaped specimens of Fuji IX Extra, Fuji II LC and Ketac N100 were prepared and stored in 2 ml of artificial saliva at 37°C for 8 weeks. Specimens of each material were divided randomly into three subgroups as 1 and 4 minutes application of 1.23% APF gel and 1 minute application of 1% TiF4 solution. Specimens were reaged for another 8 weeks. Microhardness, surface roughness values and surface morphology were evaluated by using Vicker's hardness test, surface profilometry and scanning electron microscopy (SEM) for all time interventions, respectively. One-way Anova test was performed and differences were compared by Tukey's HSD and Dunnet T3 test. Results: APF and TiF4 applications decreased microhardness significantly in Fuji II LC. In Fuji IX Extra microhardness decreased significantly after 1- and 4-min APF applications. Ketac N100 showed no difference in microhardness after APF and TiF4 applications. Surface roughness was not affected at any time interval for three restorative materials. Conclusion: Within the limitations of this vitro study, it was revealed that, potential adverse effects of APF and TiF4 applications might be material dependant. Hence, restorative materials should be selected in accordance with kind, frequency and application time of fluoridation to avoid deteriorations of the restorations.

Keywords

microhardness, surface roughness, APF, TiF4

Cite and Share

Topaloglu-Ak A,Cogulu D,Kocatas Ersin N,Sen BH. Microhardness and Surface Roughness of Glass Ionomer Cements after APF and TiF4 Applications. Journal of Clinical Pediatric Dentistry. 2013. 37(1);45-52.

References

1. Leinfelder  KF.  Glass  Ionomers:  current  clinical  developments.  J Am Dent Assoc, 124: 62–64, 1993.

2. Croll TP. Glass ionomers and esthetic dentistry: what the new proper-ties mean to dentistry. J Am Dent Assoc, 123: 51–54, 1992.

3. McLean  JW. The  clinical  use  of  glass-ionomer  cements—future  and current developments. Clin Mater, 7: 283–288, 1991.

4. Moszner N, Salz U. New developments of polymeric dental composi-tes. Program Polymer Science, 26: 535–576, 2001.

5. Markovic DLJ, Petrovic BB, Peric TO. Fluoride content and recharge ability  of  five  glassionomer  dental  materials.  BMC  Oral  Health,  28: 8–21, 2008.

6. Coutinho E, Cardoso MV, De Munck J, Neves AA, Van Landuyt KL, Poitevin  A,  Peumans  M,  Lambrechts  P,  Van  Meerbeek  B.  Bonding effectiveness  and  interfacial  characterization  of  a  nano-filled  resin-modified glass-ionomer. Dent Mater, 25: 1347–1357, 2009.

7. Marinho VC. Cochrane reviews of randomized trials of fluoride therapies for preventing dental caries. Eur Arch Paediatr Dent, 10: 183–191, 2009.

8. van Rijkom H, Ruben J, Vieira A, Huysmans MC, Truin GJ, Mulder J. Erosion-inhibiting effect of sodium fluoride and titanium tetrafluoride treatment in vitro. Eur J Oral Sci, Jun;111(3): 253–7, 2003.

9. Magalhães AC, Kato MT, Rios D, Wiegand A, Attin, Buzalaf MA: The effect of an experimental 4% TiF4 varnish compared to NaF varnishes and  4%  TiF4 solution  on  dental  erosion  in  vitro.  Caries  Res,  42: 269–274, 2008. 

10. Hove LH, Holme B, Young A, Tveit AB. The erosion-inhibiting effect of TiF4, SnF2, and NaF solutions on pellicle-covered enamel in vitro. Acta Odontol Scand, Oct; 65(5): 259–64, 2007.

11. Hove LH, Holme B, Young A, Tveit AB. The protective effect of TiF4, SnF2 and NaF against erosion-like lesions in situ. Caries Res, 42(1): 68–72, 2008. 

12. García-Godoy  F,  García-Godoy  A,  García-Godoy  F.  Effect  of  APF Minute-Foam on the surface roughness, hardness, and micromorpho-logy of high-viscosity glass ionomers. J Dent Child, (Chic) 70: 19–23, 2003.

13. Yip HK, To WM, Smales RJ: Effects of artificial saliva and APF gel on the surface roughness of newer glass ionomer cements. Oper Dent, 29: 661–668, 2004.

14. Yip KH, Peng D, Smales RJ. Effects of APF gel on the physical struc-ture  of  compomers  and  glass  ionomer  cements.  Oper  Dent,  26: 231–238, 2001.

15. El-Badrawy  WA,  McComb  D.  Effect  of  home-use  fluoride  gels  on resin-modified glass-ionomer cements. Oper Dent, 23: 2–9, 1998.

16. Triana RT, Millan CP, Barrio JG, Garcia-Godoy F. Effect of APF gel on light-cured glass ionomer cements: an SEM study. J Clin Pediatr Dent, 18: 109–113, 1994.

17. Garcia-Godoy F, Leon de Perez S. Effect of fluoridated gels on a light-cured glass ionomer cement: an SEM study. J Clin Pediatr Dent, 17: 83–87, 1993.

18. Kula K, Nelson S, Kula T, Thompson V. In vitro effect of acidulated phosphate fluoride gel on the surface of composites with different filler particles. J Prosthet Dent, 56: 161–169, 1986.

19. Avşar A, Tuloglu N: Effect of different topical fluoride applications on the  surface  roughness  of  a  colored  compomer.  J Appl  Oral  Sci,  18: 171–177, 2010.

20. Neuman  E,  Garcia-Godoy  F.  Effect  of APF  gel  on  a  glass  ionomer cement: an SEM study. ASDC J Dent Child, 59: 289–295, 1992.

21. Ccahuana  VZ,  Ozcan  M,  Mesquita AM,  Nishioka  RS,  Kimpara  ET, Bottino MA. Surface degradation of glass ceramics after exposure to acidulated phosphate fluoride. J Appl Oral Sci, 18: 155–165, 2010.

22. Gao W, Smales RJ, Gale MS. Fluoride release/uptake from newer glass ionomer  cements  used  with  the  ART  approach.  Am  J  Dent,  13: 201–204, 2000.

23. Geurtsen W, Leyhausen G, Garcia-Godoy. Effect of storage media on the fluoride release and surface microhardness of four poly acid modi-fied composite resin. Dent Mater, 15: 196–201, 1999.

24. Ellakuria J, Triana R, Mínguez N, Soler I, Ibaseta G, Maza J, García-Godoy F. Effect of one-year water storage on the surface microhard-ness  of  resin-modified  versus  conventional  glass-ionomer  cements. Dent Mater, 19: 286–290, 2003.

25. Okada K, Tosaki S, Hirota K, Hume WR. Surface hardness change of restorative  filling  materials  stored  in  saliva.  Dent  Mater,  17:  34–39, 2001.

26. Yip HK, Lam WTC, Smales RJ. Surface roughness and weight loss of esthetic restorative materials related to fluoride release and uptake. J Clin Pediatr Dent, 23: 321–326, 1999.

27. Covey DA, Ewoldsen NO. Porosity in manually and machine mixed resin modified glass ionomer cements. Oper Dent, 26: 617–623, 2001. 

28. Büyükyılmaz T, Ögaard B, Rolla G. The resistance of titanium teraflu-oride-treated  human  enamel  to  strong  hydrochloric  acid.  Eur.  J  Oral Sci, 105: 473–477, 1997. 

29. Dunkin  RT,  Chambers  DW:  Gingival  response  to  class V  composite resin restorations. J Am Dent Assoc, 106: 482–484, 1983.

30. Forss H, Seppa L, Alakuijala P: Plaque accumulation on glass ionomer filling material. Proc Finn Dent Soc, 87: 34, 1991.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Scopus: CiteScore 1.8 (2023) Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles (22,794 active titles and 13,583 Inactive titles) from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject fields: life sciences, social sciences, physical sciences and health sciences.

Submission Turnaround Time

Conferences

Top